电荷藕合元件CCD是什么万博客户端
作者: MBX 来源: 未知 发布时间:2018-08-11 12:01

  电荷藕合元件是代替照相底像用来记录影像的电子元件,CCD像素所含的电量和入射到这像素的光强度成正比。CCD记录光的效率约是 70%,远高于传统底片的 2%,所以可以大幅缩短天文观测的时间。

  电荷耦合元件(Charge-coupled Device)简称CCD,作为一种集成电路,CCD上有许多排列整齐的电容,能感应光线,并将影像转变成数字信号。经由外部电路的控制,每个小电容能将其所带的电荷转给它相邻的电容。CCD广泛应用在数码摄影、天文学,尤其是光学遥测技术、光学与频谱望远镜,和高速摄影技术。

  CCD成像的关键是在于其感光层,为了扩展CCD的采光率,必须扩展单一像素的受光面积。但是提高采光率的办法也容易使画质下降。这一层“微型镜头”就等于在感光层前面加上一副眼镜。因此感光面积不再因为传感器的开口面积而决定,而改由微型镜片的表面积来决定。

  CCD的第二层是“分色滤色片”,目前有两种分色方式,一是RGB原色分色法,另一个则是CMYK补色分色法这两种方法各有优缺点。首先,我们先了解一下两种分色法的概念,RGB即三原色分色法,几乎所有人类眼睛可以识别的颜色,都可以通过红、绿和蓝来组成,而RGB三个字母分别就是Red、Green和Blue,这说明RGB分色法是通过这三个通道的颜色调节而成。再说CMYK,这是由四个通道的颜色配合而成,它们分别是青(C)、洋红 (M)、黄(Y)、黑(K)。在印刷业中,CMYK更为适用,但其调节出来的颜色不及RGB的多。

  原色CCD的优势在于画质锐利,色彩真实,但缺点则是噪点问题。相对的,补色CCD多了一个Y黄色滤色器,在色彩的分辨上比较仔细,但却牺牲了部分影像的分辨率。

  CCD的第三层是“感光片”,这层主要是负责将穿过滤色层的光源转换成电子信号,并将信号传送到影像处理芯片,将影像还原。

  线型CCD面型CCD又称全幅式CCD、阵列型CCD。面型CCD的嚗光方式有以下三种。

  1、单CCD芯片三次嚗光:即通过三色滤镜轮盘分别将红蓝绿三色光投射在CCD上,三次采集后合成得到影像。这种方式得到的影像质量很高,但三次嚗光,不能用于拍摄动态影像。

  2、三CCD芯片一次嚗光:三个CCD芯片,分别感应红绿蓝三色光(或其中两片感应绿色光,另一片感应红蓝光),自然光通过分光棱镜系统将三色光分别投影在CCD上,一次嚗光得到完整影像。这种方式得到的影像质量和单芯片三次嚗光一样,而一次嚗光可拍摄动态影像。缺点是三CCD的成本很高,分光棱镜的制作技术难度也很大。

  3、单CCD芯片一次嚗光:CCD上组合排列感应三种色光的像素,一次嚗光后得到影像,由于人眼对绿色最为敏感,通常CCD上的感绿色像素最多。这种方式的影像质量最低,但受成本的限制和对动态影像的拍摄要求,市面上主流产品大都采用单CCD芯片一次嚗光。

  近年来,CCD器件及其应用技术的研究取得了惊人的进展,特别是在图像传感和非接触测量领域的发展更为迅速。随着CCD技术和理论的不断发展,CCD技术应用的广度与深度必将越来越大。CCD是使用一种高感光度的半导体材料集成,它能够根据照射在其面上的光线产生相应的电荷信号,在通过模数转换器芯片转换成“0”或“1”的数字信号,这种数字信号经过压缩和程序排列后,可由闪速存储器或硬盘卡保存,可对被测物体进行准确的测量、分析。

  CCD最常应用于数码相机、光学扫瞄仪与摄影机的感光元件。能捕捉到70%的入射光,优于传统菲林底片的2%,其优越的性能迅速获得天文学家的大量采用。

  传真机所用的是线型CCD,传真机或扫瞄仪用的线性CCD每次捕捉一细长条的光影。一旦完成曝光的动作,控制电路会使电容单元上的电荷传到相邻的下一个单元,到达边缘最后一个单元时,电荷讯号传入放大器,转变成电位。如此周着复始,直到整个影像都转成电位,取样并数位化之后存入内存。储存的影像可以传送到打印机、储存设备或显示器。

  数码相机或摄影机所用的是面型CCD,一次捕捉一整张影像,或从中撷取一块方形的区域。一般的彩色数码相机是将拜尔滤镜( Bayer filter )加装在CCD上。每四个像素形成一个单元,一个负责过滤红色、一个过滤蓝色,两个过滤绿色,万博客户端。但是效果一般。用三片CCD和分光棱镜组成的3CCD系统能将颜色分得更好,分光棱镜能把入射光分析成红、蓝、绿三种色光,由三片CCD各自负责色光的呈像。所有的专业级数位摄影机,和一部份的半专业级数位摄影机采用3CCD技术。目前,超高分辨率的CCD芯片仍相当昂贵,配备3CCD的高解析静态照相机,其价位往往超出许多专业摄影者的预算。因此有些高档相机使用旋转式色彩滤镜,兼顾高分辨率与忠实的色彩呈现。这类多次成像的照相机只能用于拍摄静态物品。

  CCD同时也广泛应用于天文摄影与各种夜视装置,而各大型天文台亦不断研发高像素CCD以拍摄极高解像之天体照片。CCD能使固定式的望远镜发挥有如带追踪望远镜的功能。方法是让CCD上电荷读取和移动的方向与天体运行方向一致,速度也同步,以CCD导航不仅能使望远镜有效纠正追踪误差,还能使望远镜记录到比原来更大的视场。一般的CCD大多能感应红外线,所以衍生出红外线影像、夜视装置、零照度(或趋近零照度)摄影机/照相机等。因室温下的物体会有红外线的黑体辐射效应,天文用CCD常以液态氮或半导体冷却。

中科院logo